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Abstract
Increasing amounts of data exist in medical
databases. When multiple variables are measured for
each case in a data set, there exists an underlying
relationship between all pairs of variables, some
highly correlated and some not. This report describes
a technique that creates networks of related
variables, or relevance networks, by dropping links
with either too weak correlation or too few data
points to defend the relationship. The paper describes
how applying this methodology to the domain of
laboratory results allows the generation of
meaningful relations between types of laboratory
tests. These relations could be used as the basis of
further exploratory research.

Purpose
In an unsupervised manner, extract meaningful
relationships between variables in large medical
databases in order to generate hypotheses to be
studied with targeted research.

Background
With increasing data in medical databases, medical
data mining is growing in popularity. Some of these
analyses use techniques from the machine learning
literature, including inducing propositional rules from
databases using rough sets [1], using these rules in an
expert system [2], using Bayes models to find similar
cases [3], using a finite-mixture-augmented naive-
Bayes model to classify cases [4], and constructing
decision trees and neural networks to classify cases.
These applications have focused on supervised
techniques in very specific domains, where cases are
labeled and classifications are induced or trained.
Unsupervised techniques applied to medicine include
AutoClass, a system using mixture models to
determine optimal classes. [5]

Bayesian networks [6] have traditionally been used to
model conditional probabilities between variables in
the medical domain. However, there are three reasons
why using Bayesian networks is difficult for
unsupervised learning. First, computing the structure
of a Bayesian network without any prior assignment
is computationally intractable. Second, updating and
maintaining the conditional probabilities in networks
with cycles is difficult, and networks with cycles
should not necessarily be excluded. Third, computing

and updating conditional probabilities is hard when
continuous variables are used instead of discrete
values (for instance, 100, 210, or 345 mg/dl versus
"high" or "normal"). In addition to these three
problems, information on the specific relatedness
between variables may be lost when these variables
are forced into discrete values.

Our purpose was to exploit existing electronic
databases for unsupervised medical knowledge
discovery without a prior model or information.
Observations collected within labs, physical
examination, history, and gene expressions can be
expressed as continuous variables describing human
physiology at a point in time. These variables may be
related to each others in several ways: (1) directly
through physiology, such as serum concentration of
bicarbonate and alveolar partial pressure of carbon
dioxide; (2) related through mathematical formulae,
such as absolute neutrophil count and percentage of
neutrophils; (3) related indirectly through hidden
variables, such as how thyrotropin releasing hormone
controls thyroxine level through thyroid stimulating
hormone; and (4) related through synonymy, such as
somatomedin C and insulin-like growth factor-1 both
referring to the same molecule. Although the
relations discovered in a medical database may not be
of high quality compared to a prospective study, or
even a comprehensive retrospective chart review, we
felt that the hypotheses generated can be used to fuel
further clinical investigations.

Our goal was to identify candidate models and
systems of these putative relationships for further
exploration. Specifically, we wanted to ascertain the
relationships between laboratory tests, to see if an
unsupervised technique could discover the
physiologic, mathematical, and other classes of
relationships between types of tests.

Methods
Construction of Table of Simultaneous Laboratory
Measurements

We first created a list of all patients registered at
Children's Hospital between November 1998 and
February 1999. We then created a list of all clinical
laboratory tests performed on these patients along
with results and date and time of specimen collection.
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Laboratory tests that did not result in a numeric value
at least three or more times were excluded.

Each laboratory measurement was considered in the
context of an interval of time for which the result was
considered to be valid. These intervals were
calculated without a priori knowledge. For each type
of laboratory test, a pass was made through the list of
results and the minimum amount of time between any
two sequential results for a patient was calculated.
This minimum time was considered the valid interval
for that lab test. For example, if a shortest interval for
sequential hematocrit measurements on any single
patient was when it was measured on patient X at 8
AM and 10 AM on the same day, then the valid
interval for all hematocrit results for all patients was
set to be 2 hours. We acknowledge that these valid
intervals could have been determined more
accurately and appropriately with an expert-
constructed knowledge base of half-lives and other
physiologic parameters; however, such a technique
does not realistically scale well when hundreds of
laboratory tests are to be analyzed.

For each patient, the list of laboratory results was
cross-tabulated into a table, so that each type of
laboratory test was placed in a separate column.
Laboratory results with overlapping valid intervals of
time were placed in the same rows. Thus, laboratory
tests that were not performed simultaneously, but
whose valid intervals overlapped, could be compared
against each other in the same row. As shown in
figure 1, this allowed for tests with longer valid
intervals to be compared to tests with shorter valid
intervals. We felt this reduced the bias of similarly-
sampled routine tests being exclusively compared
against each other. The resulting cross-tabulated
tables were sparse arrays, in that not every laboratory
test was present in every intersecting valid interval.
Unknown values were treated differently than zero
values.

Creation ofRelevance Networks
Each column in the table was treated as a separate
variable. We first performed an analysis between
each pair of variables. If there were three or more
unique rows where each of the pair of variables was
present, we attempted to fit a linear model between
them. For each pairwise comparison, we stored the
correlation coefficient, r, measuring the quality of fit
of the linear model, and the number of intersecting
intervals, n. The result of this was that almost every
variable was connected to every other variable by a
linear model of varying quality, by which we mean
the n and r2 of each correlation varied widely.

Determined
Valid Intervals

Patient Date /
Number Time Hemoglobin Hematocrit Thyroxine ...

13423 9/4:4 pm 14.3 43.2

13423 9/4: pm 5.7 ...
13423 9/12: 2 pm 12.1 38.9

Hemoglobin Hematocrit Thyroxine ...

2 hours 2 hours 10 days ...

9/4: 4 pm

Overlapping 5 pm 14.3 43.2
Valid Intervals 6 pm

9/12: 2pmII5. ..
12.1 38.9

4 pm

Hemoglobin Hematocrit Thyroxine

14.3 43.2

Resulting Table 14.3 43.2 5.7
Used To Construct
Relevance Networks 5.7

38.9 5.7 II 12.1

Other Valid Intervals
Other Patients

Figure 1: Methodology for creating table of
overlapping laboratory results.

To split this nearly completely-connected network, a
threshold n and r2 were chosen. Those links
representing linear models with r2 under the threshold
or models constructed with fewer points of data than
the threshold n, were dropped. This led to the
breakup of the completely connected network into
smaller islands, where connections were stronger
than the chosen thresholds. These islands, or
relevance networks, were then displayed in a
graphical manner, and the relationship of the
variables in each relevance network were analyzed
manually.

Graphically, each relevance network is represented
separately. Each node represents a variable. The
thickness of the link between variables is drawn
proportionally to the r2 of the link. The number of
surrounding lines around the link (or the "jiggle" of
the link) is proportional to the n of the link. A legend
summarizing these graphical features is shown in
figure 2.
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Results

A total of 5,158 patients were found to be registered
during the 4 month period. These patients had 798
different types of laboratory tests performed that
resulted in numeric values, making a total of 410,514
distinct results. When laboratory tests performed
fewer than 3 times were excluded, 642 types of tests
remained. After the cross-tabulation, the resulting
array measured 642 (types of tests) by 28,566
(intersecting valid intervals). This computation was

performed by a program written in Java querying an

Oracle 8 database, and running on a 266 megahertz
Pentium II processor. The process took under 15
minutes of wall-clock time.

Creation of the pairwise r and n arrays was

performed by a C language program on a Sun Ultra

1 2 3 4 5 6 7 8
SPEC GR UA NAU CLWB LDH HNR ESR IRI FX

M NA Jt I T

NAWB COSMOU CLU Q CL AST PT < AAT CD BS FX

HPC 5000 server running Solaris, taking 30 minutes
of wall-clock time. Each resulting array was square,
measuring 642 columns on each side.

The creation of the relevance networks was

performed by a program written in Matlab, running in
under 10 seconds on a 266 megahertz Pentium II

processor. Constructing the graphical representation
of these relevance networks took under 15 seconds.

Setting the threshold r2 at 0.6 and n at 50 resulted in
the relevance networks seen in figure 3. The overall
model detected both positive and negative
correlations. The resulting relevance networks shown
here are not surprising; we show them because it is
reassuring that what is being found is consistent with
basic human physiology. However, as the r2 and n are
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Figure 3: Relevance networks formed with threshold r2 at 0.6 and n at 50. Nineteen networks were formed,
connecting a total of 48 variables. The largest network connects 5 variables. The numbers label specific networks
referred to by the text. Abbreviations: 1. OSMO: serum osmolarity, NA: serum sodium, NAWB: whole blood sodium;
2. SPEC GR UA: urine specific gravity, OSMOU: urine osmolarity; 3. NAU: urine sodium, CLU: urine chloride; 4.
CLWB: whole blood chloride, CL: serum chloride; 5. LDH: lactic acid dehydrogenase, AST: aspartate
aminotransferase; 6. INR: international normalized ratio, PT: prothrombin time; 7. ESR: erythrocyte sedimentation
rate, AAT: alpha-i antitrypsin; 8. IRI FX: insulin level, BS FX: blood sugar; 9. RBC: red blood cell count, HGB:
hemoglobin, HCT: hematocrit; 10. 02SATART, 02SAT ART: arterial oxygen saturation, 02HGB ART: arterial
oxyhemoglobin, HHGB ART: arterial deoxyhemoglobin; 11. WBC: white blood cell count, NEUT ABS: absolute
neutrophil count in automated differential; 12. WBC COR: corrected white blood cell count, ABS NEUT: absolute
neutrophil count in manual differential; 13. NEUT-A: percentage of neutrophils in automated differential, LYMPH-A:
percentage of lymphocytes; 14. NEUT: percentage of neutrophils in manual differential, LYMPH: percentage of
lymphocytes; 15. MCV: mean red cell corpuscular volume, MCH: mean corpuscular hemoglobin; 16. FIB: fibrinogen,
EST FIB: estimated fibrinogen; 17. CO 2: serum bicarbonate, BICARBVEN: venous bicarbonate measured as blood
gas, BICARBART: arterial bicarbonate; 18. NA SWT: sweat test left arm sodium, CL SWT: chloride, NA SWT RT:
sweat test right arm sodium, CL SWT RT: chloride; 19. OR TEMP: operating room patient temperature, OR PH:
blood gas pH, OR PC02: blood gas partial pressure of carbon dioxide, OR TC02: blood gas measured whole blood
bicarbonate, OR HC03: serum bicarbonate.
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Figure 2: Graphical representation of models between two variables. The number of data points used to create the
model, or n, increases in the table from left to right, and is represented by the number of surrounding lines, or the
"jiggle" of the link. The r2 of the model increases in the table from top to bottom, and is represented by the thickness
of the line. Not shown, C placed next to a line indicates a linear model with negative slope (negative r).



lowered to less conservative values, other relevance
networks appear that are less obvious, and remain for
further clinical investigation.

Each link in each network represents a putative
connection belonging to a taxonomy of five types of
relationships: identity or synonymy, mathematical,
physiologic, pathologic, and causal. An example of
the first is seen in network 16, where serum
fibrinogen level is linked to estimated fibrinogen
level. These two variables represent an identical
concept and distribution. Other links of this type are
in network 4, where serum chloride is related to
whole blood chloride, and in network 10 where two
separate labels exist for arterial oxygen saturation
measurements.

Network 6 demonstrates the second type of link:
mathematical. Prothrombin time is linked to the
international normalized ratio, a mathematical
relation that normalizes the prothrombin time using
laboratory controls. In network 9, hematocrit is
calculated based on red blood cell count.

Many physiologic links were found in the data set. In
network 8, increasing serum blood sugar level is
positively correlated with increasing serum insulin
level. In the sweat test for cystic fibrosis, sodium and
chloride are transported together and this is shown in
network 18. In network 15, the amount of
hemoglobin in red cells is correctly shown to be
related to the size of the red cells. Network 19 shows
the inverse relationship between the partial pressure
of carbon dioxide and pH.

A pathologic type of link is shown in network 7.
Erythrocyte sedimentation rate is a nonspecific
indicator of inflammation, and its link to alpha-i
antitrypsin, an acute phase protein properly models
this relationship in inflammatory conditions.
Dehydration from diarrhea is a common condition in
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Figure 4: Changing the threshold r2 and n affects the
number of relevance networks created.

our patient population, and hypertonic hypernatremia
can be demonstrated by an increase in both sodium
and osmolarity, shown in network 1. Network 5
shows aspartate aminotransferase level related to
lactic acid dehydrogenase, both of which are elevated
in hepatic disease.

The laboratory tests include only a few variables
relevant to human biology; therefore, few of the links
are directly causal. One instance where the link is
direct is when increasing blood sugar causes the beta-
cells in the pancreas to release more insulin. This is
properly demonstrated in network 8.

The effect of the threshold r2 and n on the number of
nets created is shown in figure 4. As the threshold r2
is lowered, initially more small relevance nets are
created. As the process continues, these scattered
nets are merged finally into one large network. Thus,
the threshold r2 can be thought of as the fit, or
accuracy, of the entire model. Lowering the threshold
n has a different effect: more links are created having
fewer data points to back up each model. Not shown
in figure 4 is the size of the networks and how they
vary with the threshold r2 and n; with a lower n,
larger networks are formed at higher r2. Statistically,
the confidence interval for r2 is inversely proportional
to n: as more points are included, the confidence
interval for r2 is narrower. [7] In this way, the
threshold n can be thought of as the consistency, or
acceptable degree of error in each model between
variables and the overall model. By setting the two
parameters of threshold r2 and n, one can select a
model with a particular accuracy and consistency for
the degree of belief, as diagrammed in figure 5.

Discussion
By applying the technique of creating islands of
variables with high cross-correlation coefficients, or
relevance networks, to the laboratory results cross-
tabulation, we were successfully able to generate
valid physiologic, pathophysiologic and
mathematical, and synonymic relationships
hypotheses. Changing the threshold r2 and n allows
specificity in the accuracy and consistency of the
generation of a range of networks with varying
degrees of belief.

Creating relevance networks on a larger set of
laboratory results would produce links backed by
more data points; this could be used to automate
linking of laboratory results classified under two
labels (for instance, merging results from separate
institutions).

There are a few limitations with this technique. First,
the relevance networks are necessarily undirected.
Each link represents a hypothesis that a linear
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relationship exists between two variables; more
complex casual mechanisms cannot be ascertained
without a priori knowledge. Related to this, each
node or variable is not analyzed free from
confounders. Confounders may exist in four ways:
(1) categorical variables that may or may not be
present in the model, but have an effect on intra-
variable relationships, such as the specific medical
identifier number or gender; (2) continuous variables
that are in the model, but act as discrete variables, as
exemplified by the fact that a higher serum hCG does
not make one "more pregnant"; (3) continuous
variables that are hidden from the model, such as the
myriad of socioeconomic variables and other
physiologic parameters that confound use of initial
blood glucose to determine length of stay for an
admission for new onset diabetes; and (4) variables
that directly or indirectly influenced the selection
bias, such as the date used to select these laboratory
results.

One may view the purpose of this methodology as to
find as many such confounders as possible that may
exist in the data set. A domain expert or additional
data are still needed to ascertain the importance of
each link and how direct or indirect each link is.

Future Directions

We envision at least four areas for expanding the use
and development of relevance nets. First, although
this technique works well on sparse matrices, it
performs better on complete matrices with less
missing data, such as those from RNA expression
scanning arrays [8] or in the stock market domain.
Second, other types of models besides linear may be
used between variables. Third, picking a few highly
connected variables from relevance networks for use
as training features in classification engines might

Irncming n

C

Figure 5: Increasing n narrows the confidence
intervalof r2, improving-the consistency of the linear
models. An increasing 9 means an improvement in
the accuracy of fit of thilinear models.

allow better classification with fewer features.
Finally, rows in the data set that violate the model
between two variables may be interesting to study as
pathologic exceptions.
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